JavaScript Editor Source code editor     What Is Ajax 

Main Page

7.4. Optimizing Database Structure

7.4.1. Design Choices

MySQL keeps row data and index data in separate files. Many (almost all) other database systems mix row and index data in the same file. We believe that the MySQL choice is better for a very wide range of modern systems.

Another way to store the row data is to keep the information for each column in a separate area (examples are SDBM and Focus). This causes a performance hit for every query that accesses more than one column. Because this degenerates so quickly when more than one column is accessed, we believe that this model is not good for general-purpose databases.

The more common case is that the index and data are stored together (as in Oracle/Sybase, et al). In this case, you find the row information at the leaf page of the index. The good thing with this layout is that it, in many cases, depending on how well the index is cached, saves a disk read. The bad things with this layout are:

  • Table scanning is much slower because you have to read through the indexes to get at the data.

  • You cannot use only the index table to retrieve data for a query.

  • You use more space because you must duplicate indexes from the nodes (you cannot store the row in the nodes).

  • Deletes degenerate the table over time (because indexes in nodes are usually not updated on delete).

  • It is more difficult to cache only the index data.

7.4.2. Make Your Data as Small as Possible

One of the most basic optimizations is to design your tables to take as little space on the disk as possible. This can result in huge improvements because disk reads are faster, and smaller tables normally require less main memory while their contents are being actively processed during query execution. Indexing also is a lesser resource burden if done on smaller columns.

MySQL supports many different storage engines (table types) and row formats. For each table, you can decide which storage and indexing method to use. Choosing the proper table format for your application may give you a big performance gain. See Chapter 14, Storage Engines.

You can get better performance for a table and minimize storage space by using the techniques listed here:

  • Use the most efficient (smallest) data types possible. MySQL has many specialized types that save disk space and memory. For example, use the smaller integer types if possible to get smaller tables. MEDIUMINT is often a better choice than INT because a MEDIUMINT column uses 25% less space.

  • Declare columns to be NOT NULL if possible. It makes everything faster and you save one bit per column. If you really need NULL in your application, you should definitely use it. Just avoid having it on all columns by default.

  • For MyISAM tables, if you do not have any variable-length columns (VARCHAR, TEXT, or BLOB columns), a fixed-size row format is used. This is faster but unfortunately may waste some space. See Section 14.1.3, “MyISAM Table Storage Formats”. You can hint that you want to have fixed length rows even if you have VARCHAR columns with the CREATE TABLE option ROW_FORMAT=FIXED.

  • Starting with MySQL 5.0.3, InnoDB tables use a more compact storage format. In earlier versions of MySQL, InnoDB rows contain some redundant information, such as the number of columns and the length of each column, even for fixed-size columns. By default, tables are created in the compact format (ROW_FORMAT=COMPACT). If you wish to downgrade to older versions of MySQL, you can request the old format with ROW_FORMAT=REDUNDANT.

    The compact InnoDB format also changes how CHAR columns containing UTF-8 data are stored. With ROW_FORMAT=REDUNDANT, a UTF-8 CHAR(N) occupies 3 Ч N bytes, given that the maximum length of a UTF-8 encoded character is three bytes. Many languages can be written primarily using single-byte UTF-8 characters, so a fixed storage length often wastes space. With ROW_FORMAT=COMPACT format, InnoDB allocates a variable amount of storage in the range from N to 3 Ч N bytes for these columns by stripping trailing spaces if necessary. The minimum storage length is kept as N bytes to facilitate in-place updates in typical cases.

  • The primary index of a table should be as short as possible. This makes identification of each row easy and efficient.

  • Create only the indexes that you really need. Indexes are good for retrieval but bad when you need to store data quickly. If you access a table mostly by searching on a combination of columns, create an index on them. The first part of the index should be the column most used. If you always use many columns when selecting from the table, you should use the column with more duplicates first to obtain better compression of the index.

  • If it is very likely that a string column has a unique prefix on the first number of characters, it's better to index only this prefix, using MySQL's support for creating an index on the leftmost part of the column (see Section 13.1.4, “CREATE INDEX Syntax”). Shorter indexes are faster, not only because they require less disk space, but because they also give you more hits in the index cache, and thus fewer disk seeks. See Section 7.5.2, “Tuning Server Parameters”.

  • In some circumstances, it can be beneficial to split into two a table that is scanned very often. This is especially true if it is a dynamic-format table and it is possible to use a smaller static format table that can be used to find the relevant rows when scanning the table.

7.4.3. Column Indexes

All MySQL data types can be indexed. Use of indexes on the relevant columns is the best way to improve the performance of SELECT operations.

The maximum number of indexes per table and the maximum index length is defined per storage engine. See Chapter 14, Storage Engines. All storage engines support at least 16 indexes per table and a total index length of at least 256 bytes. Most storage engines have higher limits.

With col_name(N) syntax in an index specification, you can create an index that uses only the first N characters of a string column. Indexing only a prefix of column values in this way can make the index file much smaller. When you index a BLOB or TEXT column, you must specify a prefix length for the index. For example:

CREATE TABLE test (blob_col BLOB, INDEX(blob_col(10)));

Prefixes can be up to 1000 bytes long (767 bytes for InnoDB tables). Note that prefix limits are measured in bytes, whereas the prefix length in CREATE TABLE statements is interpreted as number of characters. Be sure to take this into account when specifying a prefix length for a column that uses a multi-byte character set.

You can also create FULLTEXT indexes. These are used for full-text searches. Only the MyISAM storage engine supports FULLTEXT indexes and only for CHAR, VARCHAR, and TEXT columns. Indexing always takes place over the entire column and column prefix indexing is not supported. For details, see Section 12.8, “Full-Text Search Functions”.

You can also create indexes on spatial data types. Currently, only MyISAM supports R-tree indexes on spatial types. As of MySQL 5.0.16, other storage engines use B-trees for indexing spatial types (except for ARCHIVE and NDBCLUSTER, which do not support spatial type indexing).

The MEMORY storage engine uses HASH indexes by default, but also supports BTREE indexes.

7.4.4. Multiple-Column Indexes

MySQL can create composite indexes (that is, indexes on multiple columns). An index may consist of up to 15 columns. For certain data types, you can index a prefix of the column (see Section 7.4.3, “Column Indexes”).

A multiple-column index can be considered a sorted array containing values that are created by concatenating the values of the indexed columns.

MySQL uses multiple-column indexes in such a way that queries are fast when you specify a known quantity for the first column of the index in a WHERE clause, even if you do not specify values for the other columns.

Suppose that a table has the following specification:

    id         INT NOT NULL,
    last_name  CHAR(30) NOT NULL,
    first_name CHAR(30) NOT NULL,
    PRIMARY KEY (id),
    INDEX name (last_name,first_name)

The name index is an index over the last_name and first_name columns. The index can be used for queries that specify values in a known range for last_name, or for both last_name and first_name. Therefore, the name index is used in the following queries:

SELECT * FROM test WHERE last_name='Widenius';

  WHERE last_name='Widenius' AND first_name='Michael';

  WHERE last_name='Widenius'
  AND (first_name='Michael' OR first_name='Monty');

  WHERE last_name='Widenius'
  AND first_name >='M' AND first_name < 'N';

However, the name index is not used in the following queries:

SELECT * FROM test WHERE first_name='Michael';

  WHERE last_name='Widenius' OR first_name='Michael';

The manner in which MySQL uses indexes to improve query performance is discussed further in Section 7.4.5, “How MySQL Uses Indexes”.

7.4.5. How MySQL Uses Indexes

Indexes are used to find rows with specific column values quickly. Without an index, MySQL must begin with the first row and then read through the entire table to find the relevant rows. The larger the table, the more this costs. If the table has an index for the columns in question, MySQL can quickly determine the position to seek to in the middle of the data file without having to look at all the data. If a table has 1,000 rows, this is at least 100 times faster than reading sequentially. If you need to access most of the rows, it is faster to read sequentially, because this minimizes disk seeks.

Most MySQL indexes (PRIMARY KEY, UNIQUE, INDEX, and FULLTEXT) are stored in B-trees. Exceptions are that indexes on spatial data types use R-trees, and that MEMORY tables also support hash indexes.

Strings are automatically prefix- and end-space compressed. See Section 13.1.4, “CREATE INDEX Syntax”.

In general, indexes are used as described in the following discussion. Characteristics specific to hash indexes (as used in MEMORY tables) are described at the end of this section.

MySQL uses indexes for these operations:

  • To find the rows matching a WHERE clause quickly.

  • To eliminate rows from consideration. If there is a choice between multiple indexes, MySQL normally uses the index that finds the smallest number of rows.

  • To retrieve rows from other tables when performing joins. MySQL can use indexes on columns more efficiently if they are declared as the same type and size. In this context, VARCHAR and CHAR are considered the same if they are declared as the same size. For example, VARCHAR(10) and CHAR(10) are the same size, but VARCHAR(10) and CHAR(15) are not.

    Comparison of dissimilar columns may prevent use of indexes if values cannot be compared directly without conversion. Suppose that a numeric column is compared to a string column. For a given value such as 1 in the numeric column, it might compare equal to any number of values in the string column such as '1', ' 1', '00001', or '01.e1'. This rules out use of any indexes for the string column.

  • To find the MIN() or MAX() value for a specific indexed column key_col. This is optimized by a preprocessor that checks whether you are using WHERE key_part_N = constant on all key parts that occur before key_col in the index. In this case, MySQL does a single key lookup for each MIN() or MAX() expression and replaces it with a constant. If all expressions are replaced with constants, the query returns at once. For example:

    SELECT MIN(key_part2),MAX(key_part2)
      FROM tbl_name WHERE key_part1=10;
  • To sort or group a table if the sorting or grouping is done on a leftmost prefix of a usable key (for example, ORDER BY key_part1, key_part2). If all key parts are followed by DESC, the key is read in reverse order. See Section 7.2.11, “ORDER BY Optimization”.

  • In some cases, a query can be optimized to retrieve values without consulting the data rows. If a query uses only columns from a table that are numeric and that form a leftmost prefix for some key, the selected values may be retrieved from the index tree for greater speed:

    SELECT key_part3 FROM tbl_name 
      WHERE key_part1=1

Suppose that you issue the following SELECT statement:

mysql> SELECT * FROM tbl_name WHERE col1=val1 AND col2=val2;

If a multiple-column index exists on col1 and col2, the appropriate rows can be fetched directly. If separate single-column indexes exist on col1 and col2, the optimizer tries to find the most restrictive index by deciding which index finds fewer rows and using that index to fetch the rows.

If the table has a multiple-column index, any leftmost prefix of the index can be used by the optimizer to find rows. For example, if you have a three-column index on (col1, col2, col3), you have indexed search capabilities on (col1), (col1, col2), and (col1, col2, col3).

MySQL cannot use an index if the columns do not form a leftmost prefix of the index. Suppose that you have the SELECT statements shown here:

SELECT * FROM tbl_name WHERE col1=val1;
SELECT * FROM tbl_name WHERE col1=val1 AND col2=val2;

SELECT * FROM tbl_name WHERE col2=val2;
SELECT * FROM tbl_name WHERE col2=val2 AND col3=val3;

If an index exists on (col1, col2, col3), only the first two queries use the index. The third and fourth queries do involve indexed columns, but (col2) and (col2, col3) are not leftmost prefixes of (col1, col2, col3).

A B-tree index can be used for column comparisons in expressions that use the =, >, >=, <, <=, or BETWEEN operators. The index also can be used for LIKE comparisons if the argument to LIKE is a constant string that does not start with a wildcard character. For example, the following SELECT statements use indexes:

SELECT * FROM tbl_name WHERE key_col LIKE 'Patrick%';
SELECT * FROM tbl_name WHERE key_col LIKE 'Pat%_ck%';

In the first statement, only rows with 'Patrick' <= key_col < 'Patricl' are considered. In the second statement, only rows with 'Pat' <= key_col < 'Pau' are considered.

The following SELECT statements do not use indexes:

SELECT * FROM tbl_name WHERE key_col LIKE '%Patrick%';
SELECT * FROM tbl_name WHERE key_col LIKE other_col;

In the first statement, the LIKE value begins with a wildcard character. In the second statement, the LIKE value is not a constant.

If you use ... LIKE '%string%' and string is longer than three characters, MySQL uses the Turbo Boyer-Moore algorithm to initialize the pattern for the string and then uses this pattern to perform the search more quickly.

A search using col_name IS NULL employs indexes if col_name is indexed.

Any index that does not span all AND levels in the WHERE clause is not used to optimize the query. In other words, to be able to use an index, a prefix of the index must be used in every AND group.

The following WHERE clauses use indexes:

... WHERE index_part1=1 AND index_part2=2 AND other_column=3
    /* index = 1 OR index = 2 */
... WHERE index=1 OR A=10 AND index=2
    /* optimized like "index_part1='hello'" */
... WHERE index_part1='hello' AND index_part3=5
    /* Can use index on index1 but not on index2 or index3 */
... WHERE index1=1 AND index2=2 OR index1=3 AND index3=3;

These WHERE clauses do not use indexes:

    /* index_part1 is not used */
... WHERE index_part2=1 AND index_part3=2

    /*  Index is not used in both parts of the WHERE clause  */
... WHERE index=1 OR A=10

    /* No index spans all rows  */
... WHERE index_part1=1 OR index_part2=10

Sometimes MySQL does not use an index, even if one is available. One circumstance under which this occurs is when the optimizer estimates that using the index would require MySQL to access a very large percentage of the rows in the table. (In this case, a table scan is likely to be much faster because it requires fewer seeks.) However, if such a query uses LIMIT to retrieve only some of the rows, MySQL uses an index anyway, because it can much more quickly find the few rows to return in the result.

Hash indexes have somewhat different characteristics from those just discussed:

  • They are used only for equality comparisons that use the = or <=> operators (but are very fast). They are not used for comparison operators such as < that find a range of values.

  • The optimizer cannot use a hash index to speed up ORDER BY operations. (This type of index cannot be used to search for the next entry in order.)

  • MySQL cannot determine approximately how many rows there are between two values (this is used by the range optimizer to decide which index to use). This may affect some queries if you change a MyISAM table to a hash-indexed MEMORY table.

  • Only whole keys can be used to search for a row. (With a B-tree index, any leftmost prefix of the key can be used to find rows.)

MySQL Enterprise.  Often, it is not possible to predict exactly what indexes will be required or will be most efficient — actual table usage is the best indicator. The MySQL Network Monitoring and Advisory Service provides expert advice on this topic. For more information see

7.4.6. The MyISAM Key Cache

To minimize disk I/O, the MyISAM storage engine exploits a strategy that is used by many database management systems. It employs a cache mechanism to keep the most frequently accessed table blocks in memory:

  • For index blocks, a special structure called the key cache (or key buffer) is maintained. The structure contains a number of block buffers where the most-used index blocks are placed.

  • For data blocks, MySQL uses no special cache. Instead it relies on the native operating system filesystem cache.

This section first describes the basic operation of the MyISAM key cache. Then it discusses features that improve key cache performance and that enable you to better control cache operation:

  • Access to the key cache no longer is serialized among threads. Multiple threads can access the cache concurrently.

  • You can set up multiple key caches and assign table indexes to specific caches.

To control the size of the key cache, use the key_buffer_size system variable. If this variable is set equal to zero, no key cache is used. The key cache also is not used if the key_buffer_size value is too small to allocate the minimal number of block buffers (8).

MySQL Enterprise.  For expert advice on identifying the optimum size for key_buffer_size, subscribe to the MySQL Network Monitoring and Advisory Service. See

When the key cache is not operational, index files are accessed using only the native filesystem buffering provided by the operating system. (In other words, table index blocks are accessed using the same strategy as that employed for table data blocks.)

An index block is a contiguous unit of access to the MyISAM index files. Usually the size of an index block is equal to the size of nodes of the index B-tree. (Indexes are represented on disk using a B-tree data structure. Nodes at the bottom of the tree are leaf nodes. Nodes above the leaf nodes are non-leaf nodes.)

All block buffers in a key cache structure are the same size. This size can be equal to, greater than, or less than the size of a table index block. Usually one these two values is a multiple of the other.

When data from any table index block must be accessed, the server first checks whether it is available in some block buffer of the key cache. If it is, the server accesses data in the key cache rather than on disk. That is, it reads from the cache or writes into it rather than reading from or writing to disk. Otherwise, the server chooses a cache block buffer containing a different table index block (or blocks) and replaces the data there by a copy of required table index block. As soon as the new index block is in the cache, the index data can be accessed.

If it happens that a block selected for replacement has been modified, the block is considered “dirty.” In this case, prior to being replaced, its contents are flushed to the table index from which it came.

Usually the server follows an LRU (Least Recently Used) strategy: When choosing a block for replacement, it selects the least recently used index block. To make this choice easier, the key cache module maintains a special queue (LRU chain) of all used blocks. When a block is accessed, it is placed at the end of the queue. When blocks need to be replaced, blocks at the beginning of the queue are the least recently used and become the first candidates for eviction. Shared Key Cache Access

Threads can access key cache buffers simultaneously, subject to the following conditions:

  • A buffer that is not being updated can be accessed by multiple threads.

  • A buffer that is being updated causes threads that need to use it to wait until the update is complete.

  • Multiple threads can initiate requests that result in cache block replacements, as long as they do not interfere with each other (that is, as long as they need different index blocks, and thus cause different cache blocks to be replaced).

Shared access to the key cache enables the server to improve throughput significantly. Multiple Key Caches

Shared access to the key cache improves performance but does not eliminate contention among threads entirely. They still compete for control structures that manage access to the key cache buffers. To reduce key cache access contention further, MySQL also provides multiple key caches. This feature enables you to assign different table indexes to different key caches.

Where there are multiple key caches, the server must know which cache to use when processing queries for a given MyISAM table. By default, all MyISAM table indexes are cached in the default key cache. To assign table indexes to a specific key cache, use the CACHE INDEX statement (see Section, “CACHE INDEX Syntax”). For example, the following statement assigns indexes from the tables t1, t2, and t3 to the key cache named hot_cache:

mysql> CACHE INDEX t1, t2, t3 IN hot_cache;
| Table   | Op                 | Msg_type | Msg_text |
| test.t1 | assign_to_keycache | status   | OK       |
| test.t2 | assign_to_keycache | status   | OK       |
| test.t3 | assign_to_keycache | status   | OK       |

The key cache referred to in a CACHE INDEX statement can be created by setting its size with a SET GLOBAL parameter setting statement or by using server startup options. For example:

mysql> SET GLOBAL keycache1.key_buffer_size=128*1024;

To destroy a key cache, set its size to zero:

mysql> SET GLOBAL keycache1.key_buffer_size=0;

Note that you cannot destroy the default key cache. Any attempt to do this will be ignored:

mysql> SET GLOBAL key_buffer_size = 0;

mysql> SHOW VARIABLES LIKE 'key_buffer_size';
| Variable_name   | Value   |
| key_buffer_size | 8384512 |

Key cache variables are structured system variables that have a name and components. For keycache1.key_buffer_size, keycache1 is the cache variable name and key_buffer_size is the cache component. See Section, “Structured System Variables”, for a description of the syntax used for referring to structured key cache system variables.

By default, table indexes are assigned to the main (default) key cache created at the server startup. When a key cache is destroyed, all indexes assigned to it are reassigned to the default key cache.

For a busy server, we recommend a strategy that uses three key caches:

  • A “hot” key cache that takes up 20% of the space allocated for all key caches. Use this for tables that are heavily used for searches but that are not updated.

  • A “cold” key cache that takes up 20% of the space allocated for all key caches. Use this cache for medium-sized, intensively modified tables, such as temporary tables.

  • A “warm” key cache that takes up 60% of the key cache space. Employ this as the default key cache, to be used by default for all other tables.

One reason the use of three key caches is beneficial is that access to one key cache structure does not block access to the others. Statements that access tables assigned to one cache do not compete with statements that access tables assigned to another cache. Performance gains occur for other reasons as well:

  • The hot cache is used only for retrieval queries, so its contents are never modified. Consequently, whenever an index block needs to be pulled in from disk, the contents of the cache block chosen for replacement need not be flushed first.

  • For an index assigned to the hot cache, if there are no queries requiring an index scan, there is a high probability that the index blocks corresponding to non-leaf nodes of the index B-tree remain in the cache.

  • An update operation most frequently executed for temporary tables is performed much faster when the updated node is in the cache and need not be read in from disk first. If the size of the indexes of the temporary tables are comparable with the size of cold key cache, the probability is very high that the updated node is in the cache.

CACHE INDEX sets up an association between a table and a key cache, but the association is lost each time the server restarts. If you want the association to take effect each time the server starts, one way to accomplish this is to use an option file: Include variable settings that configure your key caches, and an init-file option that names a file containing CACHE INDEX statements to be executed. For example:

key_buffer_size = 4G
hot_cache.key_buffer_size = 2G
cold_cache.key_buffer_size = 2G

MySQL Enterprise.  For advice on how best to configure your my.cnf/my.ini option file subscribe to MySQL Network Monitoring and Advisory Service. Recommendations are based on actual table usage. For more information see

The statements in mysqld_init.sql are executed each time the server starts. The file should contain one SQL statement per line. The following example assigns several tables each to hot_cache and cold_cache:

CACHE INDEX db1.t1, db1.t2, db2.t3 IN hot_cache
CACHE INDEX db1.t4, db2.t5, db2.t6 IN cold_cache Midpoint Insertion Strategy

By default, the key cache management system uses the LRU strategy for choosing key cache blocks to be evicted, but it also supports a more sophisticated method called the midpoint insertion strategy.

When using the midpoint insertion strategy, the LRU chain is divided into two parts: a hot sub-chain and a warm sub-chain. The division point between two parts is not fixed, but the key cache management system takes care that the warm part is not “too short,” always containing at least key_cache_division_limit percent of the key cache blocks. key_cache_division_limit is a component of structured key cache variables, so its value is a parameter that can be set per cache.

When an index block is read from a table into the key cache, it is placed at the end of the warm sub-chain. After a certain number of hits (accesses of the block), it is promoted to the hot sub-chain. At present, the number of hits required to promote a block (3) is the same for all index blocks.

A block promoted into the hot sub-chain is placed at the end of the chain. The block then circulates within this sub-chain. If the block stays at the beginning of the sub-chain for a long enough time, it is demoted to the warm chain. This time is determined by the value of the key_cache_age_threshold component of the key cache.

The threshold value prescribes that, for a key cache containing N blocks, the block at the beginning of the hot sub-chain not accessed within the last N Ч key_cache_age_threshold / 100 hits is to be moved to the beginning of the warm sub-chain. It then becomes the first candidate for eviction, because blocks for replacement always are taken from the beginning of the warm sub-chain.

The midpoint insertion strategy allows you to keep more-valued blocks always in the cache. If you prefer to use the plain LRU strategy, leave the key_cache_division_limit value set to its default of 100.

The midpoint insertion strategy helps to improve performance when execution of a query that requires an index scan effectively pushes out of the cache all the index blocks corresponding to valuable high-level B-tree nodes. To avoid this, you must use a midpoint insertion strategy with the key_cache_division_limit set to much less than 100. Then valuable frequently hit nodes are preserved in the hot sub-chain during an index scan operation as well. Index Preloading

If there are enough blocks in a key cache to hold blocks of an entire index, or at least the blocks corresponding to its non-leaf nodes, it makes sense to preload the key cache with index blocks before starting to use it. Preloading allows you to put the table index blocks into a key cache buffer in the most efficient way: by reading the index blocks from disk sequentially.

Without preloading, the blocks are still placed into the key cache as needed by queries. Although the blocks will stay in the cache, because there are enough buffers for all of them, they are fetched from disk in random order, and not sequentially.

To preload an index into a cache, use the LOAD INDEX INTO CACHE statement. For example, the following statement preloads nodes (index blocks) of indexes of the tables t1 and t2:

| Table   | Op           | Msg_type | Msg_text |
| test.t1 | preload_keys | status   | OK       |
| test.t2 | preload_keys | status   | OK       |

The IGNORE LEAVES modifier causes only blocks for the non-leaf nodes of the index to be preloaded. Thus, the statement shown preloads all index blocks from t1, but only blocks for the non-leaf nodes from t2.

If an index has been assigned to a key cache using a CACHE INDEX statement, preloading places index blocks into that cache. Otherwise, the index is loaded into the default key cache. Key Cache Block Size

It is possible to specify the size of the block buffers for an individual key cache using the key_cache_block_size variable. This permits tuning of the performance of I/O operations for index files.

The best performance for I/O operations is achieved when the size of read buffers is equal to the size of the native operating system I/O buffers. But setting the size of key nodes equal to the size of the I/O buffer does not always ensure the best overall performance. When reading the big leaf nodes, the server pulls in a lot of unnecessary data, effectively preventing reading other leaf nodes.

Currently, you cannot control the size of the index blocks in a table. This size is set by the server when the .MYI index file is created, depending on the size of the keys in the indexes present in the table definition. In most cases, it is set equal to the I/O buffer size. Restructuring a Key Cache

A key cache can be restructured at any time by updating its parameter values. For example:

mysql> SET GLOBAL cold_cache.key_buffer_size=4*1024*1024;

If you assign to either the key_buffer_size or key_cache_block_size key cache component a value that differs from the component's current value, the server destroys the cache's old structure and creates a new one based on the new values. If the cache contains any dirty blocks, the server saves them to disk before destroying and re-creating the cache. Restructuring does not occur if you change other key cache parameters.

When restructuring a key cache, the server first flushes the contents of any dirty buffers to disk. After that, the cache contents become unavailable. However, restructuring does not block queries that need to use indexes assigned to the cache. Instead, the server directly accesses the table indexes using native filesystem caching. Filesystem caching is not as efficient as using a key cache, so although queries execute, a slowdown can be anticipated. After the cache has been restructured, it becomes available again for caching indexes assigned to it, and the use of filesystem caching for the indexes ceases.

7.4.7. MyISAM Index Statistics Collection

Storage engines collect statistics about tables for use by the optimizer. Table statistics are based on value groups, where a value group is a set of rows with the same key prefix value. For optimizer purposes, an important statistic is the average value group size.

MySQL uses the average value group size in the following ways:

  • To estimate how may rows must be read for each ref access

  • To estimate how many row a partial join will produce; that is, the number of rows that an operation of this form will produce:

    (...) JOIN tbl_name ON tbl_name.key = expr

As the average value group size for an index increases, the index is less useful for those two purposes because the average number of rows per lookup increases: For the index to be good for optimization purposes, it is best that each index value target a small number of rows in the table. When a given index value yields a large number of rows, the index is less useful and MySQL is less likely to use it.

The average value group size is related to table cardinality, which is the number of value groups. The SHOW INDEX statement displays a cardinality value based on N/S, where N is the number of rows in the table and S is the average value group size. That ratio yields an approximate number of value groups in the table.

For a join based on the <=> comparison operator, NULL is not treated differently from any other value: NULL <=> NULL, just as N <=> N for any other N.

However, for a join based on the = operator, NULL is different from non-NULL values: expr1 = expr2 is not true when expr1 or expr2 (or both) are NULL. This affects ref accesses for comparisons of the form tbl_name.key = expr: MySQL will not access the table if the current value of expr is NULL, because the comparison cannot be true.

For = comparisons, it does not matter how many NULL values are in the table. For optimization purposes, the relevant value is the average size of the non-NULL value groups. However, MySQL does not currently allow that average size to be collected or used.

For MyISAM tables, you have some control over collection of table statistics by means of the myisam_stats_method system variable. This variable has two possible values, which differ as follows:

  • When myisam_stats_method is nulls_equal, all NULL values are treated as identical (that is, they all form a single value group).

    If the NULL value group size is much higher than the average non-NULL value group size, this method skews the average value group size upward. This makes index appear to the optimizer to be less useful than it really is for joins that look for non-NULL values. Consequently, the nulls_equal method may cause the optimizer not to use the index for ref accesses when it should.

  • When myisam_stats_method is nulls_unequal, NULL values are not considered the same. Instead, each NULL value forms a separate value group of size 1.

    If you have many NULL values, this method skews the average value group size downward. If the average non-NULL value group size is large, counting NULL values each as a group of size 1 causes the optimizer to overestimate the value of the index for joins that look for non-NULL values. Consequently, the nulls_unequal method may cause the optimizer to use this index for ref lookups when other methods may be better.

If you tend to use many joins that use <=> rather than =, NULL values are not special in comparisons and one NULL is equal to another. In this case, nulls_equal is the appropriate statistics method.

The myisam_stats_method system variable has global and session values. Setting the global value affects MyISAM statistics collection for all MyISAM tables. Setting the session value affects statistics collection only for the current client connection. This means that you can force a table's statistics to be regenerated with a given method without affecting other clients by setting the session value of myisam_stats_method.

To regenerate table statistics, you can use any of the following methods:

  • Set myisam_stats_method, and then issue a CHECK TABLE statement

  • Execute myisamchk --stats_method=method_name --analyze

  • Change the table to cause its statistics to go out of date (for example, insert a row and then delete it), and then set myisam_stats_method and issue an ANALYZE TABLE statement

Some caveats regarding the use of myisam_stats_method:

  • You can force table statistics to be collected explicitly, as just described. However, MySQL may also collect statistics automatically. For example, if during the course of executing statements for a table, some of those statements modify the table, MySQL may collect statistics. (This may occur for bulk inserts or deletes, or some ALTER TABLE statements, for example.) If this happens, the statistics are collected using whatever value myisam_stats_method has at the time. Thus, if you collect statistics using one method, but myisam_stats_method is set to the other method when a table's statistics are collected automatically later, the other method will be used.

  • There is no way to tell which method was used to generate statistics for a given MyISAM table.

  • myisam_stats_method applies only to MyISAM tables. Other storage engines have only one method for collecting table statistics. Usually it is closer to the nulls_equal method.

7.4.8. How MySQL Opens and Closes Tables

When you execute a mysqladmin status command, you should see something like this:

Uptime: 426 Running threads: 1 Questions: 11082
Reloads: 1 Open tables: 12

The Open tables value of 12 can be somewhat puzzling if you have only six tables.

MySQL is multi-threaded, so there may be many clients issuing queries for a given table simultaneously. To minimize the problem with multiple client threads having different states on the same table, the table is opened independently by each concurrent thread. This uses additional memory but normally increases performance. With MyISAM tables, one extra file descriptor is required for the data file for each client that has the table open. (By contrast, the index file descriptor is shared between all threads.)

The table_cache, max_connections, and max_tmp_tables system variables affect the maximum number of files the server keeps open. If you increase one or more of these values, you may run up against a limit imposed by your operating system on the per-process number of open file descriptors. Many operating systems allow you to increase the open-files limit, although the method varies widely from system to system. Consult your operating system documentation to determine whether it is possible to increase the limit and how to do so.

table_cache is related to max_connections. For example, for 200 concurrent running connections, you should have a table cache size of at least 200 Ч N, where N is the maximum number of tables per join in any of the queries which you execute. You must also reserve some extra file descriptors for temporary tables and files.

Make sure that your operating system can handle the number of open file descriptors implied by the table_cache setting. If table_cache is set too high, MySQL may run out of file descriptors and refuse connections, fail to perform queries, and be very unreliable. You also have to take into account that the MyISAM storage engine needs two file descriptors for each unique open table. You can increase the number of file descriptors available to MySQL using the --open-files-limit startup option to mysqld. See Section B.1.2.17, “'File' Not Found and Similar Errors”.

The cache of open tables is kept at a level of table_cache entries. The default value is 64; this can be changed with the --table_cache option to mysqld. Note that MySQL may temporarily open more tables than this to execute queries.

MySQL Enterprise.  Performance may suffer if table_cache is set too low. For expert advice on the optimum value for this variable, subscribe to the MySQL Network Monitoring and Advisory Service. For more information see

MySQL closes an unused table and removes it from the table cache under the following circumstances:

  • When the cache is full and a thread tries to open a table that is not in the cache.

  • When the cache contains more than table_cache entries and a table in the cache is no longer being used by any threads.

  • When a table flushing operation occurs. This happens when someone issues a FLUSH TABLES statement or executes a mysqladmin flush-tables or mysqladmin refresh command.

When the table cache fills up, the server uses the following procedure to locate a cache entry to use:

  • Tables that are not currently in use are released, beginning with the table least recently used.

  • If a new table needs to be opened, but the cache is full and no tables can be released, the cache is temporarily extended as necessary.

When the cache is in a temporarily extended state and a table goes from a used to unused state, the table is closed and released from the cache.

A table is opened for each concurrent access. This means the table needs to be opened twice if two threads access the same table or if a thread accesses the table twice in the same query (for example, by joining the table to itself). Each concurrent open requires an entry in the table cache. The first open of any MyISAM table takes two file descriptors: one for the data file and one for the index file. Each additional use of the table takes only one file descriptor for the data file. The index file descriptor is shared among all threads.

If you are opening a table with the HANDLER tbl_name OPEN statement, a dedicated table object is allocated for the thread. This table object is not shared by other threads and is not closed until the thread calls HANDLER tbl_name CLOSE or the thread terminates. When this happens, the table is put back in the table cache (if the cache is not full). See Section 13.2.3, “HANDLER Syntax”.

You can determine whether your table cache is too small by checking the mysqld status variable Opened_tables:

mysql> SHOW GLOBAL STATUS LIKE 'Opened_tables';
| Variable_name | Value |
| Opened_tables | 2741  |

If the value is very large, even when you have not issued many FLUSH TABLES statements, you should increase the table cache size. See Section 5.2.3, “System Variables”, and Section 5.2.5, “Status Variables”.

7.4.9. Drawbacks to Creating Many Tables in the Same Database

If you have many MyISAM tables in the same database directory, open, close, and create operations are slow. If you execute SELECT statements on many different tables, there is a little overhead when the table cache is full, because for every table that has to be opened, another must be closed. You can reduce this overhead by making the table cache larger.


JavaScript Editor Source code editor     What Is Ajax