Unlike other .NET languages, C++ has interoperability support that allows managed and unmanaged code to exist in the same application and even in the same file (with the managed, unmanaged pragmas). This allows C++ developers to integrate .NET functionality into existing C++ applications without disturbing the rest of the application.
You can also call unmanaged functions from a managed compiland using dllexport, dllimport.
Implicit PInvoke is useful when you do not need to specify how function parameters will be marshaled, or any of the other details that can be specified when explicitly calling DllImportAttribute.
C++ provides two ways for managed and unmanaged functions to interoperate:
Explicit PInvoke is supported by the .NET Framework and is available in most .NET languages. But as its name implies, C++ Interop is specific to C++.
C++ Interop
C++ Interop is recommended over explicit PInvoke because it provides better type safety, is typically less tedious to implement, is more forgiving if the unmanaged API is modified, and makes performance enhancements possible that are not possible with explicit PInvoke. However, C++ Interop is not possible if the unmanaged source code is not available or when compiling with /clr:safe (see Pure and Verifiable Code for more information).
C++ COM Interop
The interoperability features supported by C++ offer a particular advantage over other .NET languages when it comes to interoperating with COM components. Instead of being limited to the restrictions of the .NET Framework Type Library Importer (Tlbimp.exe), such as limited support for data types and the mandatory exposure of every member of every COM interface, C++ Interop allows COM components to be accessed at will and does not require separate interop assemblies. For more information, see Using Native COM Servers from .NET.
Blittable Types
For unmanaged APIs that use simple, intrinsic types (see Blittable and Non-Blittable Types), no special coding is required because these data types have the same representation in memory, but more complex data types require explicit data marshaling. For an example, see How to: Call Native DLLs from Managed Code Using PInvoke.
Example
В | Copy Code |
---|
// vcmcppv2_impl_dllimp.cpp
// compile with: /clr:pure user32.lib
using namespace System::Runtime::InteropServices;
// Implicit DLLImport specifying calling convention
extern "C" int __stdcall MessageBeep(int);
// explicit DLLImport needed here to use P/Invoke marshalling because
// System::String ^ is not the type of the first parameter to printf
[DllImport("msvcrt.dll", EntryPoint = "printf", CallingConvention = CallingConvention::Cdecl, charset=utf-8::Ansi)]
// or just
// [DllImport("msvcrt.dll")]
int printf(System::String ^, ...);
int main() {
// (string literals are System::String by default)
printf("Begin beep\n");
MessageBeep(100000);
printf("Done\n");
} |
Output
In This Section
For information on using delegates in an interop scenario, see delegate.
See Also